ServerlessBench: A benchmark Suite
for Serverless Computing

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang,
Zigian Lu , Pingchao Yang, Chenggang Qin, Haibo Chen

IPADS, Shanghai Jiao Tong University
Ant Financial Services Group

Serverless Computing

ALY . Serverless platform
) @ -. Upload functions

| e » Function |

Compiled and
Developers distributed

O Invoke query AP Boot AY
7\ E CEIEEY Sandbox]
Users

AWS Lambda Microsoft Azure Google Functions IBM OpenWhisk

} Obstacles in Expanding of Serverless Computing

« Serverless application developers
— How to architect a serverless application to be performant?
— How to benefit in economy with serverless computing?

— Which serverless platform to choose?

« Serverless platform designers

— What metrics to emphasize in platform design?
— Where are the performance bottlenecks of serverless platforms?

A benchmark suit that can reflect the critical metrics of serverless computing
and characterize serverless platforms is necessary.

} Related Works

« AWS serverless application repository

— A catalog of serverless applications (589 when referenced in Sept. 2020)
— Only simple and demonstrative functions

« Evaluation of serverless platforms

— Comparing performance of certain workloads on different platforms
— No insights for serverless platform and application design

« Benchmark suites

— FuntionBench, DeathstarBench, CloudSuite, DCBench
— Not design around serverless-specific metrics, e.g., startup performance

Serverless Metrics

1. Communication performance

— Implement complex serverless applications with function composition

Sequence chain

request > Coordinator — result

Nested chain

result =

request — Function1 g Function?2 g& Function3

Serverless Metrics

1. Communication performance
— Implement complex serverless applications with function composition

— Typical composition models: sequence function chain and nested function chain

2. Startup Latency
— Startup latency is added to each request processing time
— Short execution time of a serverless function (in seconds or milliseconds)
— Auto-scalability makes it harder to keep tail latency low
— Cold start with long latency, warm start with wasted resources

} Serverless Metrics

3. Stateless overhead

— EXxplicit states (needed by function logic) passing using external storage services
(e.g. AWS S3)

— Implicit states (e.g. JIT profile and session cache) lost that might hurt
performance

4. Resource efficiency

— For users: how much resources to provision for best performance and economy
benefits

— For platforms: ability to co-locate serverless functions with other workloads to
improve utilization

) Overview

1. Serverless application with varied resource needs
Serverless application with parallelizable part
Real-world application breakdown

Concurrent startup

a &~ Db

Stateless cost

Function Composition

1. Serverless application with varied resource needs
— Function execution bill proportional to provisioned resources

— Serverless platformsl'l allocate computing resources proportional to provisioned
memory

AluExecutor

KeyDownloader ALU results

[1] Including AWS Lambda, Google Cloud Functions and IBM Cloud Functions. 9

} Function Composition

1. Serverless application with varied resource needs

Load configuration —v—
Compute -®- ||

o] Load configuration + compute —#—
|

- 5_\\&-{{!:_*__‘_‘

Y—v

0

500 1000 1500 2000 2500 3000
Memory size (MB)

(a) Execution time.

Performance for “Load
configuration” phase not
improve with larger memory

10

Function Composition

1. Serverless application with varied resource needs

Load configuration —v—

Compute -®- ||

Load configuration + compute —#—

2000 ‘;'L—%

‘
— O — ’\<
_.';; v

0500 1000 1500 2000 2500 3000
Memory size (MB)

(a) Execution time.

Billing (GB * s)

Memory allocation for “Load
configuration” phase remains
1G after this point

/—
1.7 H Illltegralé v '
1.6 Split —e— /
1.5
Ll T8 s { ,,
1.3 o
1.2

L.1673500 1000 1500 2000 2500 3000
Memory size (MB)

(b) Billing.

Implication: Decoupling a serverless application with varied memory needs

across execution phases might save costs.

11

Function Composition

2. Serverless application with parallelizable part

loopTimes

!

ALU

Main

doAlu

|
Results

(a) Sequential

Listing 1 Function code of Alu.

1: def Alu(loopTimes) :
result = 0

result += doAlu ()

NANE

|for i in range (loopTimes) :

return result

loopTimes

In-func threads Results

(b) In-function parallel

loopTimes
Results

-

Function instances

(c) Parallel
12

Function Composition

2. Serverless application with parallelizable part

N W
wn O

Latency (s)

—_— = N
S wn O

S W

- — —
Parallel —v—]
In-func Parallel —®—
Sequential — ||
0 2 4 6 8 10
Concurrency
(a) Latency.

Billing (GB * s)
© =~ N WA L O ®

e ®
Parallel ~—v—
In-func Parallel —@&—
. Seqpential — .
0 2 4 6 10
Concurrency
(b) Billing.

Implication: Decoupling the parallelizable part in an application might help boost

the overall performance with parallel executed serverless functions.

13

} Function Composition

3. Real-world application breakdown

(a) Image processing (sequence)

m Extract img Transform Handler Thumbnail Return Results
metadata metadata metadata

(b) Alexa skills (nested)

—— \Voice #—— Smart <«—— Device
analysis home controllers

(c) Data analysis (combined)

m-» Check == Format == Write to DB CouchDB Write to DB

| |
I Sum Average Merit |
: wage pay I
|
| |

Data process sequence "

Function Composition

3. Real-world application breakdown

200
S & o ’\&% &
S W ad NeRNENY
8 100
a
O
5
A 50H AN e . e
—
Image Alexa Compile Data

(a) Processing latency breakdown

Implication: Composition methods can significantly impact the billing in
serverless computing as the execution time and overhead are charged more
than once in a nested function chain.

15

Startup Latency

4. Concurrent startup
— 40 requests are issued concurrently

|__Fn| Openhisk-| OpenWhisk-40 1 Fn OffenWhisk{ 1 OpenWhisk-40
7 e — o —
7z | [A—— 7 e
S 08 ; %’_ 0.8 1t
S o6 S “OpenWhisk-40" denotes the
S s || tests on OpenWhisk with
m 04 , 04 |)
a a I\ container concurrency of 40.
O 02 O 02—]
“\‘ ,:‘\ I l
0 0 100 200 300 400 500 0 0 100 200 300 400 S0C

Startup latency (ms) Startup latency (ms)

(a) Java function. (b) C function.

Implication: The design of supporting components for serverless platforms
(such as load balancer and message queue) can affect the scalability of

serverless computing.

16

} Stateless Execution

5. Stateless cost
— Explicit states: needed by application logic, handled by application developers

— Implicit states: not affect correctness, usually discarded, valuable for
performance optimization

o

ImageResize

0
J

[@,)

o+

Execution time (ms)

(S

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of requests

17

} Stateless Execution

5. Stateless cost

_ | “With states shaﬁﬁg — m===m Without states sharing |
1000

% : &4 : v
_q.é 100 | _dé 100 b . .
= =
Z | Z

10F .. e SURS S] 10F

15723 34 45 5-6 6-7 7-8 89 9-10 >10 12723 34 45 5-6 67 7-8 89 9-10>10

Execution time (ms) Execution time (ms)

Execution time distribution on OpenWhisk.

Implication: Serverless platforms could share the implicit states, e.g., cache or
JIT profile, among instances of a function to improve the execution performance.

More Details Iin the Paper

Test name Metrics

Description

TCA1: Varied resource needs Communication

Resource-efficiency in function composition.

TC2: Parallel composition Communication

Performance with parallel functions.

TC3: Long function chain Communication

Performance of a long function chain.

TC4: Application breakdown Communication

Latency breakdown of real-world applications.

TC5: Data transfer costs Communication

Performance of cross-function data transfer.

TC6: Startup breakdown Startup latency

Startup latency breakdown.

TC7: Sandbox comparison Startup latency

Four serverless sandbox systems.

TC8: Function size Startup latency

Different function sizes.

TC9: Concurrent startup Startup latency

Startup latency with concurrent requests

TC10: Stateless costs Stateless Cost of stateless execution
TC11: Memory bandwidth Perf isolation Performance isolation on memory bandwidth.
TC12: CPU contention Perf isolation Performance isolation on CPU resource.

19

Conclusion EJJ\A ServerlessBench

« ServerlessBench: a benchmark suite for serverless computing

— Critical metrics in serverless computing is identified
— Evaluation on existing serverless platforms

— Serverless implications that can guide design of serverless platforms and
applications

 Open-source info:

— https://serverlessbench.systems/
— https://github.com/SJTU-IPADS/ServerlessBench

v 11 IPADS (y

I I I’ INSTITUTE OF PARALLEL

AND DISTRIBUTED SYSTEMS

20

https://github.com/ServerlessBench/ServerlessBench

