
ServerlessBench: A benchmark Suite 
for Serverless Computing

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, 
Ziqian Lu , Pingchao Yang, Chenggang Qin, Haibo Chen 

IPADS, Shanghai Jiao Tong University
Ant Financial Services Group



Serverless Computing

2

Invoke query

Serverless platform

Function
Upload functions

Compiled and
distributed

Boot

Developers

Users

API
Gateway Sandbox

AWS Lambda Microsoft Azure Google Functions IBM OpenWhisk

SandboxSandbox



Obstacles in Expanding of Serverless Computing

3

• Serverless application developers
– How to architect a serverless application to be performant?
– How to benefit in economy with serverless computing?
– Which serverless platform to choose?

• Serverless platform designers
– What metrics to emphasize in platform design?
– Where are the performance bottlenecks of serverless platforms?

A benchmark suit that can reflect the critical metrics of serverless computing 
and characterize serverless platforms is necessary.



Related Works

4

• AWS serverless application repository
– A catalog of serverless applications (589 when referenced in Sept. 2020)
– Only simple and demonstrative functions

• Evaluation of serverless platforms
– Comparing performance of certain workloads on different platforms
– No insights for serverless platform and application design

• Benchmark suites
– FuntionBench, DeathstarBench, CloudSuite, DCBench
– Not design around serverless-specific metrics, e.g., startup performance



Serverless Metrics

5

• 1. Communication performance
– Implement complex serverless applications with function composition

Nested chain

request Function1 Function2 Function3

result

Sequence chain

request

Function1 Function2 Function3

resultCoordinator



Serverless Metrics

6

1. Communication performance
– Implement complex serverless applications with function composition
– Typical composition models: sequence function chain and nested function chain 

2. Startup Latency
– Startup latency is added to each request processing time
– Short execution time of a serverless function (in seconds or milliseconds)
– Auto-scalability makes it harder to keep tail latency low
– Cold start with long latency, warm start with wasted resources



Serverless Metrics

7

3. Stateless overhead
– Explicit states (needed by function logic) passing using external storage services 

(e.g. AWS S3)
– Implicit states (e.g. JIT profile and session cache) lost that might hurt 

performance

4. Resource efficiency
– For users: how much resources to provision for best performance and economy 

benefits
– For platforms: ability to co-locate serverless functions with other workloads to 

improve utilization



Overview
1. Serverless application with varied resource needs

2. Serverless application with parallelizable part

3. Real-world application breakdown

4. Concurrent startup

5. Stateless cost

8



Function Composition

9

1. Serverless application with varied resource needs
– Function execution bill proportional to provisioned resources
– Serverless platforms[1] allocate computing resources proportional to provisioned 

memory

S3

ALU

KeyDownloader

AluExecutor

N-time arithmetic calculations

… ALU resultsN N

[1] Including AWS Lambda, Google Cloud Functions and IBM Cloud Functions.



Function Composition

10

1. Serverless application with varied resource needs

Performance for “Load 
configuration” phase not 
improve with larger memory



Function Composition

11

Memory allocation for “Load 
configuration” phase remains 
1G after this point

1. Serverless application with varied resource needs

Implication: Decoupling a serverless application with varied memory needs 
across execution phases might save costs. 



Function Composition

12

2. Serverless application with parallelizable part

ALU
Main

doAlu

doAlu

…

loopTimes

Results

(a) Sequential (b) In-function parallel

ALU
Main

doAlu doAlu…

loopTimes

ResultsIn-func threads

(c) Parallel

Main

doAlu doAlu…

loopTimes
Results

Function instances



Function Composition

13

2. Serverless application with parallelizable part

Implication: Decoupling the parallelizable part in an application might help boost 
the overall performance with parallel executed serverless functions.



Function Composition

14

3. Real-world application breakdown

Client Extract img 
metadata

Transform 
metadata Handler Thumbnail Return 

metadata

Client Frontend Voice 
analysis

Smart 
home

Device 
controllers Devices

Events Check Format Write to DB

Sum

CouchDB

Average 
wage

Merit 
pay

Write to DB

Data process sequence

Results

(a) Image processing (sequence)

(b) Alexa skills (nested)

(c) Data analysis (combined)



Function Composition

15

3. Real-world application breakdown

Implication: Composition methods can significantly impact the billing in 
serverless computing as the execution time and overhead are charged more 
than once in a nested function chain.



Startup Latency

16

4. Concurrent startup
– 40 requests are issued concurrently

Implication: The design of supporting components for serverless platforms 
(such as load balancer and message queue) can affect the scalability of 
serverless computing.

“OpenWhisk-40” denotes the 
tests on OpenWhisk with
container concurrency of 40.



Stateless Execution

17

5. Stateless cost

– Explicit states: needed by application logic, handled by application developers

– Implicit states: not affect correctness, usually discarded, valuable for 
performance optimization



Stateless Execution

18

5. Stateless cost

Implication: Serverless platforms could share the implicit states, e.g., cache or 
JIT profile, among instances of a function to improve the execution performance.



More Details in the Paper

19

Test name Metrics Description

TC1: Varied resource needs Communication Resource-efficiency in function composition.

TC2: Parallel composition Communication Performance with parallel functions.

TC3: Long function chain Communication Performance of a long function chain.

TC4: Application breakdown Communication Latency breakdown of real-world applications.

TC5: Data transfer costs Communication Performance of cross-function data transfer.

TC6: Startup breakdown Startup latency Startup latency breakdown.

TC7: Sandbox comparison Startup latency Four serverless sandbox systems.

TC8: Function size Startup latency Different function sizes.

TC9: Concurrent startup Startup latency Startup latency with concurrent requests

TC10: Stateless costs Stateless Cost of stateless execution

TC11: Memory bandwidth Perf isolation Performance isolation on memory bandwidth.

TC12: CPU contention Perf isolation Performance isolation on CPU resource.



Conclusion

20
Thanks!

• ServerlessBench: a benchmark suite for serverless computing
– Critical metrics in serverless computing is identified
– Evaluation on existing serverless platforms
– Serverless implications that can guide design of serverless platforms and 

applications

• Open-source info:
– https://serverlessbench.systems/
– https://github.com/SJTU-IPADS/ServerlessBench

https://github.com/ServerlessBench/ServerlessBench

