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Obstacles in Expanding of Serverless Computing
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• Serverless application developers
– How to architect a serverless application to be performant?
– How to benefit in economy with serverless computing?
– Which serverless platform to choose?

• Serverless platform designers
– What metrics to emphasize in platform design?
– Where are the performance bottlenecks of serverless platforms?

A benchmark suit that can reflect the critical metrics of serverless computing 
and characterize serverless platforms is necessary.



Related Works
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• AWS serverless application repository
– A catalog of serverless applications (589 when referenced in Sept. 2020)
– Only simple and demonstrative functions

• Evaluation of serverless platforms
– Comparing performance of certain workloads on different platforms
– No insights for serverless platform and application design

• Benchmark suites
– FuntionBench, DeathstarBench, CloudSuite, DCBench
– Not design around serverless-specific metrics, e.g., startup performance



Serverless Metrics
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• 1. Communication performance
– Implement complex serverless applications with function composition
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Serverless Metrics
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1. Communication performance
– Implement complex serverless applications with function composition
– Typical composition models: sequence function chain and nested function chain 

2. Startup Latency
– Startup latency is added to each request processing time
– Short execution time of a serverless function (in seconds or milliseconds)
– Auto-scalability makes it harder to keep tail latency low
– Cold start with long latency, warm start with wasted resources



Serverless Metrics
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3. Stateless overhead
– Explicit states (needed by function logic) passing using external storage services 

(e.g. AWS S3)
– Implicit states (e.g. JIT profile and session cache) lost that might hurt 

performance

4. Resource efficiency
– For users: how much resources to provision for best performance and economy 

benefits
– For platforms: ability to co-locate serverless functions with other workloads to 

improve utilization



Overview
1. Serverless application with varied resource needs

2. Serverless application with parallelizable part

3. Real-world application breakdown

4. Concurrent startup

5. Stateless cost
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Function Composition
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1. Serverless application with varied resource needs
– Function execution bill proportional to provisioned resources
– Serverless platforms[1] allocate computing resources proportional to provisioned 

memory

S3

ALU

KeyDownloader

AluExecutor

N-time arithmetic calculations

… ALU resultsN N

[1] Including AWS Lambda, Google Cloud Functions and IBM Cloud Functions.



Function Composition
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1. Serverless application with varied resource needs

Performance for “Load 
configuration” phase not 
improve with larger memory



Function Composition
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Memory allocation for “Load 
configuration” phase remains 
1G after this point

1. Serverless application with varied resource needs

Implication: Decoupling a serverless application with varied memory needs 
across execution phases might save costs. 



Function Composition
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2. Serverless application with parallelizable part
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Function Composition
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2. Serverless application with parallelizable part

Implication: Decoupling the parallelizable part in an application might help boost 
the overall performance with parallel executed serverless functions.



Function Composition
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3. Real-world application breakdown
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(a) Image processing (sequence)

(b) Alexa skills (nested)

(c) Data analysis (combined)



Function Composition
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3. Real-world application breakdown

Implication: Composition methods can significantly impact the billing in 
serverless computing as the execution time and overhead are charged more 
than once in a nested function chain.



Startup Latency
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4. Concurrent startup
– 40 requests are issued concurrently

Implication: The design of supporting components for serverless platforms 
(such as load balancer and message queue) can affect the scalability of 
serverless computing.

“OpenWhisk-40” denotes the 
tests on OpenWhisk with
container concurrency of 40.



Stateless Execution
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5. Stateless cost

– Explicit states: needed by application logic, handled by application developers

– Implicit states: not affect correctness, usually discarded, valuable for 
performance optimization



Stateless Execution
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5. Stateless cost

Implication: Serverless platforms could share the implicit states, e.g., cache or 
JIT profile, among instances of a function to improve the execution performance.



More Details in the Paper
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Test name Metrics Description

TC1: Varied resource needs Communication Resource-efficiency in function composition.

TC2: Parallel composition Communication Performance with parallel functions.

TC3: Long function chain Communication Performance of a long function chain.

TC4: Application breakdown Communication Latency breakdown of real-world applications.

TC5: Data transfer costs Communication Performance of cross-function data transfer.

TC6: Startup breakdown Startup latency Startup latency breakdown.

TC7: Sandbox comparison Startup latency Four serverless sandbox systems.

TC8: Function size Startup latency Different function sizes.

TC9: Concurrent startup Startup latency Startup latency with concurrent requests

TC10: Stateless costs Stateless Cost of stateless execution

TC11: Memory bandwidth Perf isolation Performance isolation on memory bandwidth.

TC12: CPU contention Perf isolation Performance isolation on CPU resource.



Conclusion
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Thanks!

• ServerlessBench: a benchmark suite for serverless computing
– Critical metrics in serverless computing is identified
– Evaluation on existing serverless platforms
– Serverless implications that can guide design of serverless platforms and 

applications

• Open-source info:
– https://serverlessbench.systems/
– https://github.com/SJTU-IPADS/ServerlessBench

https://github.com/ServerlessBench/ServerlessBench

