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} Obstacles in Expanding of Serverless Computing

« Serverless application developers
— How to architect a serverless application to be performant?
— How to benefit in economy with serverless computing?

— Which serverless platform to choose?

« Serverless platform designers

— What metrics to emphasize in platform design?
— Where are the performance bottlenecks of serverless platforms?

A benchmark suit that can reflect the critical metrics of serverless computing
and characterize serverless platforms is necessary.




} Related Works

« AWS serverless application repository

— A catalog of serverless applications (589 when referenced in Sept. 2020)
— Only simple and demonstrative functions

« Evaluation of serverless platforms

— Comparing performance of certain workloads on different platforms
— No insights for serverless platform and application design

« Benchmark suites

— FuntionBench, DeathstarBench, CloudSuite, DCBench
— Not design around serverless-specific metrics, e.g., startup performance



Serverless Metrics

1. Communication performance

— Implement complex serverless applications with function composition
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Serverless Metrics

1. Communication performance
— Implement complex serverless applications with function composition

— Typical composition models: sequence function chain and nested function chain

2. Startup Latency
— Startup latency is added to each request processing time
— Short execution time of a serverless function (in seconds or milliseconds)
— Auto-scalability makes it harder to keep tail latency low
— Cold start with long latency, warm start with wasted resources



} Serverless Metrics

3. Stateless overhead

— EXxplicit states (needed by function logic) passing using external storage services
(e.g. AWS S3)

— Implicit states (e.g. JIT profile and session cache) lost that might hurt
performance

4. Resource efficiency

— For users: how much resources to provision for best performance and economy
benefits

— For platforms: ability to co-locate serverless functions with other workloads to
improve utilization



) Overview
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Function Composition

1. Serverless application with varied resource needs
— Function execution bill proportional to provisioned resources

— Serverless platformsl'l allocate computing resources proportional to provisioned
memory

AluExecutor

KeyDownloader ALU results

[1] Including AWS Lambda, Google Cloud Functions and IBM Cloud Functions. 9



} Function Composition

1. Serverless application with varied resource needs
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Function Composition

1. Serverless application with varied resource needs
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(b) Billing.

Implication: Decoupling a serverless application with varied memory needs

across execution phases might save costs.
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Function Composition

2. Serverless application with parallelizable part
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Listing 1 Function code of Alu.

1: def Alu(loopTimes) :
result = 0

result += doAlu ()

NANE

|for i in range (loopTimes) :

return result
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(b) In-function parallel
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Function Composition

2. Serverless application with parallelizable part
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Implication: Decoupling the parallelizable part in an application might help boost

the overall performance with parallel executed serverless functions.
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} Function Composition

3. Real-world application breakdown

(a) Image processing (sequence)
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Function Composition

3. Real-world application breakdown
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(a) Processing latency breakdown

Implication: Composition methods can significantly impact the billing in
serverless computing as the execution time and overhead are charged more
than once in a nested function chain.
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Startup Latency

4. Concurrent startup
— 40 requests are issued concurrently
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(a) Java function. (b) C function.

Implication: The design of supporting components for serverless platforms
(such as load balancer and message queue) can affect the scalability of

serverless computing.
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} Stateless Execution

5. Stateless cost
— Explicit states: needed by application logic, handled by application developers

— Implicit states: not affect correctness, usually discarded, valuable for
performance optimization
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} Stateless Execution

5. Stateless cost

_ | “With states shaﬁﬁg — m===m Without states sharing |
1000

% : &4 : v
_q.é 100 | _dé 100 b . .
= =
Z | Z

10F ............................................................ e SURS S ] 10F

15723 34 45 5-6 6-7 7-8 89 9-10 >10 12723 34 45 5-6 67 7-8 89 9-10>10

Execution time (ms) Execution time (ms)

Execution time distribution on OpenWhisk.

Implication: Serverless platforms could share the implicit states, e.g., cache or
JIT profile, among instances of a function to improve the execution performance.




More Details Iin the Paper

Test name Metrics

Description

TCA1: Varied resource needs Communication

Resource-efficiency in function composition.

TC2: Parallel composition Communication

Performance with parallel functions.

TC3: Long function chain Communication

Performance of a long function chain.

TC4: Application breakdown Communication

Latency breakdown of real-world applications.

TC5: Data transfer costs Communication

Performance of cross-function data transfer.

TC6: Startup breakdown Startup latency

Startup latency breakdown.

TC7: Sandbox comparison Startup latency

Four serverless sandbox systems.

TC8: Function size Startup latency

Different function sizes.

TC9: Concurrent startup Startup latency

Startup latency with concurrent requests

TC10: Stateless costs Stateless Cost of stateless execution
TC11: Memory bandwidth Perf isolation Performance isolation on memory bandwidth.
TC12: CPU contention Perf isolation Performance isolation on CPU resource.
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Conclusion EJJ\A ServerlessBench

« ServerlessBench: a benchmark suite for serverless computing

— Critical metrics in serverless computing is identified
— Evaluation on existing serverless platforms

— Serverless implications that can guide design of serverless platforms and
applications

 Open-source info:

— https://serverlessbench.systems/
— https://github.com/SJTU-IPADS/ServerlessBench
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